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Summary 10 
Mathematical modeling can help us to understand epidemic illnesses like COVID-11 
19/SARS-CoV-2 and to see how various interventions might affect their course. 12 
Here we work through the so-called SIR model (for susceptible-infected-recovered) 13 
for COVID-19. One key property of the model is that there is a critical value for R0 14 
(the number of secondary infections per primary infection), above which the 15 
disease is expected to ultimately affect much or most of the population, and below 16 
which the disease will be extinguished. This underscores the importance of social 17 
distancing, which can decrease the number of secondary infections, in the battle 18 
against this potentially catastrophic scourge. 19 
 20 
 21 
The now-standard mathematical model for the time-evolution of an infection, the 22 
SIR model, was developed in the 1920’s by the Scottish epidemiologists Anderson 23 
Gray McKendrick and William Ogilvy Kermack (1). In its simplest form, the model 24 
divvies up the population (of a city, a county, a country, or the earth) into three 25 
compartments or pools (Figure 1). Those who are susceptible to the disease are 26 
said to be in the S pool, and in our case that is initially everyone, since for a new 27 
disease like COVID-19 the expectation is that none of us are immune. Those who 28 
have caught the virus and are infectious are in the I pool. And those who had 29 
caught the virus but are no longer infectious, either because they have recovered to 30 
health or have died, are in the R pool. The conversions from one pool to another 31 
are assumed to be one-way processes.  32 
 33 
With these assumptions stated, we can write equations for the rates of infection 34 
and recovery. We assume that the rate of infection is directly proportional to the 35 
fraction of the population that is susceptible (S) and the fraction that is contagious 36 
(I): 37 
 38 

 . Eq. 1 39 

 40 

rate of infection = k1S ⋅ I



 2 

Note that there is positive feedback built into this expression: the rate of infection 41 
goes up as the fraction of the population that is infected (and infectious) goes up.  42 
 43 
The rate of recovery is proportional to I: 44 
 45 

 . Eq. 2 46 

 47 
We can then combine Eqs 1 and 2 to yield ordinary differential equations (rate 48 
equations) for the net rate of change of each of the three time-dependent species 49 
(S, I, and R): 50 
 51 

  Eq. 3 52 

  Eq. 4 53 

 . Eq. 5 54 

 55 
There are only two adjustable parameters in these equations, the two 56 
proportionality constants: k1, which is a measure of the rate of infection, and k2, 57 
which determines the rate of recovery. The ratio of k1 to k2 tells us how effective 58 
the virus is in the face of host and societal defenses, and it is traditionally termed 59 
R0 (R naught). R0 specifies how many secondary infections, on average, are going 60 
to be produced from each primary infection; it can be viewed as the basic 61 
reproduction number for the virus. For COVID-19, R0 is estimated to be 2 to 3 (2); 62 
for comparison, R0 ≈ 1.3 for influenza, a less highly contagious disease. 63 
 64 
The easiest way to get a feel for the behavior of the model is to solve the rate 65 
equations numerically for various choices of the parameters, and graph the 66 
calculated time courses. This is shown in Figure 2. We started the simulation with 67 
I[0] = 1/330,000,000, which means that initially there is a single infected individual 68 
in a country with a population of 330 million (like the US).  69 
 70 
From the linear plot in Figure 2A, it looks like S starts to drop and I and R start to 71 
increase at around 12 weeks after the initial infection. However, the semi-log plot 72 
(Figure 2B) shows that the number of infections actually increases right from the 73 
start, and that the increase is approximately exponential. From Eq. 4, it follows that 74 
the doubling time for the exponential increase is initially: 75 
 76 

rate of recovery = k2I

dS
dt

= −k1S ⋅ I

dI
dt
= k1S ⋅ I − k2I

dR
dt

= k2I
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 . Eq. 6 77 

 78 
For the values of k1 and k2 we chose here— k1 = 2.4 infections per week, and k2 = 79 
1.2 recoveries per week, which corresponds to an optimistic R0 = 2—the calculated 80 
doubling time turns out to be 0.693/1.2 = 0.58 weeks or 4 days (3), which is the 81 
current (as of March 17) doubling time for US deaths. In the US, documented cases 82 
are doubling faster than this (t ≈ 2.5 days), but that probably reflects an increase 83 
in screening as well as the actual increase in cases. 84 
 85 
The modeled number of infections is maximal at ~16 weeks and then begins to 86 
drop approximately exponentially. If the first case of COVID-19 in the US began 87 
sometime between February 1 and 15 2020, this would put the peak of cases at 88 
some time between May 23 and June 6 2020, and the peak of deaths about two 89 
weeks later. Again from Eq. 4, the half time for the exponential decrease is:  90 
 91 

 , Eq. 7 92 

 93 
where S¥ denotes the fraction of the population that is still susceptible to infection 94 
after the epidemic has run its course (calculated to be 0.20 for values of k1 and k2 95 
assumed here). 96 
 97 
At the peak of the modeled epidemic, about 15% of the population is infected, a 98 
huge percentage. And by the end of the epidemic, 80% of the population will have 99 
been infected, again a huge percentage (note that R, the fraction of the population 100 
that has recovered, is the same as the fraction of the population that at some point 101 
had been infected) (Figure 2). Assuming a case fatality rate of 1%, ultimately 0.8% 102 
of the country’s population—2,640,000 people out of 330,000,000—would die. This 103 
would be an incredibly catastrophic scenario. 104 
 105 
The peak number of infected individuals, and the ultimate number of individuals to 106 
become infected, depend only upon R0, not the individual values of k1 and k2. This 107 
is one of the reasons epidemiologists care so much about what the value of R0 is. 108 
 109 
So what would be expected if a country instituted a social distancing policy that 110 
reduced the number of secondary cases per primary case from its nominal value of 111 
R0 » 2 to something less? A relatively modest decrease in R0, from 2 to 1.5, would 112 
“flatten the curve” (4), shifting the peak of infections from 16 weeks to 31 weeks 113 
and decreasing the peak height from 15% to 6% (Figure 3). This would not only 114 

τ =
Ln[2]
k1 − k2

τ =
Ln[2]
S∞k1 − k2
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buy the country some time, but also make it so that the worst days of the infection 115 
were less likely to overwhelm the health care system, and therefore improve the 116 
ultimate mortality rate.  117 
 118 
Moreover, the proportion of the population that would ultimately be infected (and 119 
hence the proportion that would ultimately die of the infection) would drop, from 120 
80% to 58% (Figure 3). This is an improvement—58 million infections is certainly 121 
better than 80 million—but this hypothetical scenario is still catastrophic; it would 122 
result in hundreds of thousands of deaths. 123 
 124 
But if R0 can be lowered to 1 or less, something remarkable happens: the peak of 125 
infected individuals vanishes, and the proportion of the population that will 126 
ultimately become infected drops precipitously. The disease fizzles out instead of 127 
growing exponentially. For R0 = 1, our initial case would ultimately result in 128 
~26,000 cases—only 0.008% of the population (Figure 3). And if R0 = 0.5, our 129 
initial case would, on average, result in only a single additional case. 130 
 131 
The relationship between the assumed value of R0 and the cumulative number of 132 
cases that would have occurred after an infinitely long time is plotted in Figure 4. 133 
Below R0 = 1, relatively few people get sick, and then once R0 exceeds 1, the 134 
number of cases begins to rise sharply. This behavior is really the essence of this 135 
type of dynamical system. The positive feedback makes it so that the system has a 136 
critical point (a transcritical bifurcation, in the lexicon of nonlinear dynamics) that 137 
separates one type of dynamical behavior—the infection fizzles out—from a 138 
qualitatively different type of behavior—the infection explodes. This change in 139 
behavior is analogous to one type of phase transition seen in biology and physics, 140 
which is sort of interesting, but the main thing is that it really matters which side of 141 
the bifurcation we are on. 142 
 143 
Of course this is all predicated on the assumption that the SIR model is actually 144 
applicable to the COVID-19 pandemic. And, to be sure, some of the assumptions 145 
built into the model are suspect. For example, the model assumes that the 146 
population of the county, state, country, or whatever, is a well-mixed system, 147 
where every person interacts with every other person on the time scale of the 148 
epidemic. This is clearly not true—there is spatial structure to the evolving 149 
epidemic. But the most basic lessons of the model, that the infectiousness of a 150 
virus determines whether the infection will fizzle out or explode, and that the 151 
infectiousness also determines the fraction of the population that will ultimately 152 
become infected, probably are true. 153 
 154 
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So is there any reason to think that it might be possible to decrease COVID-19’s R0 155 
value below 1? The answer is yes, unquestionably, and the evidence comes from 156 
the dynamics of the epidemic in China, the first country beset by COVID-19. China 157 
is a country of 1.3 billion people, and a virus with R0 = 2 should, in principle, 158 
eventually infect 1 billion of them. With a case fatality rate of 1%, that would mean 159 
10 million deaths. But the number of COVID-19 cases in China appears to be 160 
leveling off at around 100,000 cases and 3200 deaths (3). Assuming these numbers 161 
to be accurate, the actual number of cases is 10,000-fold lower than what the 162 
model says should be expected, and possibly ~10 million lives have been saved. 163 
This is almost certainly the result of the draconian measures taken by the 164 
government to prevent person-to-person spread; they must have decreased R0 by 165 
a lot, and consequently they have halted the epidemic. The situation in the Republic 166 
of Korea is similar: in a country of 51 million people, the epidemic is leveling off at 167 
less than 10,000 cases, not the 40,000,000 expected for a disease that is this 168 
infectious. 169 
 170 
And this is why it is a sign of great hope that around the world, countries, states, 171 
businesses, and schools are implementing policies with a real likelihood of 172 
substantially decreasing R0. Surely if those individuals known to be infected 173 
(through diagnostic screening of people with COVID-19 symptoms and the contacts 174 
of those known to be infected) were to be rigorously quarantined, and those who 175 
might unknowingly be infected were to decrease their number of daily contacts by, 176 
say, a factor of 5 or so, it should be possible to hugely mitigate the millenium’s 177 
worst global health crisis. 178 
 179 
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 205 
 206 
Figure 1. The SIR model of infectious disease. Individuals in the population get 207 
transferred from susceptible (S) to infected (I) to recovered (R) pools through one-208 
way processes.  209 
 210 
  211 
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 213 
 214 
Figure 2. Simulated infection dynamics for the COVID-19 pandemic. We 215 
have assumed am infection rate constant k1 of 2.4 infections per week and a 216 
recovery rate constant k2 of 1.2 per week, which means that R0, the basic 217 
reproduction number, is 2. We assumed that at time zero there was one infected 218 
individual in a population of 330,000,000. 219 
 220 
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 223 
 224 

Figure 3. Decreasing R0, for example through social distancing, both 225 
“flattens the curve” (top) and decreases the total number of infections 226 
(bottom). Note that the fraction of the population that has recovered is the same 227 
as the fraction that has had the infection. We have assumed a country of 228 
330,000,000 people with a single individual infected at time zero, a recovery rate 229 
constant k2 = 1.2 week-1, and values of k1 to make R0 = 2, 1.5, or 1. 230 
  231 
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 232 
 233 

Figure 4. Criticality in the relationship between the ultimate number of 234 
infected individuals and the assumed R0 value. Decreasing R0 through social 235 
distancing can change an epidemic into an infection that will fizzle out. 236 
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